Bachelor of Science (B.S.) in Biology - Plant Biology Concentration Undergraduate Program By Duke University |Top Universities

Bachelor of Science (B.S.) in Biology - Plant Biology Concentration

Subject Ranking

# =32QS Subject Rankings

Main Subject Area

Biological SciencesMain Subject Area

Program overview

Main Subject

Biological Sciences

Degree

Other

Study Level

Undergraduate

The Bachelor of Science (B.S.) in biology is the degree recommended for students contemplating a career in biological or biomedical sciences. The B.S. degree requires either Calculus II or statistics, organic chemistry, and physics corequisites. Two semesters of introductory biology and eight upper-level courses are required. The upper-level courses include courses in specific areas, as well as elective courses in biology and related biological sciences. Pressures of development, particularly in tropical countries, are causing an alarming increase in the rate of species extinction, making the current resurgence in systematics especially timely. Given the reasonable estimate that systematists have only discovered and named perhaps 10% of the species on earth, and the fact that only a tiny fraction of those species have been studied in any detail, there is much work to be done in a short time. Many species will go extinct before we even know them; it is no wonder that systematists feel as though they are watching a huge, diverse library burn down before a card catalog has been prepared (or before anyone has read even 1% of the books!). Newly developed methods for data gathering and analysis of phylogenetic relationships position us on the threshold of a deep understanding of the history of the biological world. Loss of biological diversity is thus a disaster, both from an economic standpoint (How many organisms useful for food, medicine, or technology will go extinct?) and from a broader intellectual standpoint (How did the diversity of species come to be the way it is?). Systematists must have technical skills to extract information at all levels of inquiry (e.g., morphology, cytology, genetics, DNA sequences, organic chemistry, anatomy, ecology) and the theoretical background to interpret it correctly. Modern biological systematics integrates a diverse array of disciplines ranging from molecular, cell and developmental biology, to ecology and evolutionary biology. Data-gathering techniques include DNA sequencing, protein electrophoresis, electron and light microscopy, controlled growth experiments, and field studies of ecology and distribution. Analytical methods are computer intensive: hardware such as digitizing tablets and video cameras are used for automated description of morphology (morphometrics), multivariate statistics are used to describe and compare species and other taxa, numerical cladistic programs are used for phylogeny reconstruction. Specialists are needed in all groups of plants, flowering plants as well as the less heavily studied algae, mosses, ferns and fungi (including lichens). This concentration is appropriate for students planning graduate studies in these areas. More immediate employment possibilities are in the National Park Service, state and natural heritage and endangered plant programs, private consulting firms, conservation organizations, botanic gardens, and herbaria. Systematic biology is a good way to indulge urges to travel, do science, and contribute to society, all at the same time. Students fulfilling the requirements of the Concentration in Plant Biology will receive a note on their official transcript.

Program overview

Main Subject

Biological Sciences

Degree

Other

Study Level

Undergraduate

The Bachelor of Science (B.S.) in biology is the degree recommended for students contemplating a career in biological or biomedical sciences. The B.S. degree requires either Calculus II or statistics, organic chemistry, and physics corequisites. Two semesters of introductory biology and eight upper-level courses are required. The upper-level courses include courses in specific areas, as well as elective courses in biology and related biological sciences. Pressures of development, particularly in tropical countries, are causing an alarming increase in the rate of species extinction, making the current resurgence in systematics especially timely. Given the reasonable estimate that systematists have only discovered and named perhaps 10% of the species on earth, and the fact that only a tiny fraction of those species have been studied in any detail, there is much work to be done in a short time. Many species will go extinct before we even know them; it is no wonder that systematists feel as though they are watching a huge, diverse library burn down before a card catalog has been prepared (or before anyone has read even 1% of the books!). Newly developed methods for data gathering and analysis of phylogenetic relationships position us on the threshold of a deep understanding of the history of the biological world. Loss of biological diversity is thus a disaster, both from an economic standpoint (How many organisms useful for food, medicine, or technology will go extinct?) and from a broader intellectual standpoint (How did the diversity of species come to be the way it is?). Systematists must have technical skills to extract information at all levels of inquiry (e.g., morphology, cytology, genetics, DNA sequences, organic chemistry, anatomy, ecology) and the theoretical background to interpret it correctly. Modern biological systematics integrates a diverse array of disciplines ranging from molecular, cell and developmental biology, to ecology and evolutionary biology. Data-gathering techniques include DNA sequencing, protein electrophoresis, electron and light microscopy, controlled growth experiments, and field studies of ecology and distribution. Analytical methods are computer intensive: hardware such as digitizing tablets and video cameras are used for automated description of morphology (morphometrics), multivariate statistics are used to describe and compare species and other taxa, numerical cladistic programs are used for phylogeny reconstruction. Specialists are needed in all groups of plants, flowering plants as well as the less heavily studied algae, mosses, ferns and fungi (including lichens). This concentration is appropriate for students planning graduate studies in these areas. More immediate employment possibilities are in the National Park Service, state and natural heritage and endangered plant programs, private consulting firms, conservation organizations, botanic gardens, and herbaria. Systematic biology is a good way to indulge urges to travel, do science, and contribute to society, all at the same time. Students fulfilling the requirements of the Concentration in Plant Biology will receive a note on their official transcript.

Admission Requirements

7+
Other English language requirements : TOEFL with a paper-based score of 600.

Jan-2000

Tuition fees

Domestic Students

0 USD
-

International Students

0 USD
-

Scholarships

Selecting the right scholarship can be a daunting process. With countless options available, students often find themselves overwhelmed and confused. The decision can be especially stressful for those facing financial constraints or pursuing specific academic or career goals.

To help students navigate this challenging process, we recommend the following articles:

More programs from the university

Undergrad programs 168