Doctor of Philosophy (Ph.D.) in Mechanical Engineering 24 months PHD Program By Cornell University |Top Universities

Doctor of Philosophy (Ph.D.) in Mechanical Engineering

Subject Ranking

# =53QS Subject Rankings

Program Duration

24 monthsProgram duration

Main Subject Area

Engineering - MechanicalMain Subject Area

Program overview

Main Subject

Engineering - Mechanical

Study Level

PHD

The program emphasizes basic mechanical sciences to prepare students for the diversity found at the frontiers of research and industrial development. The faculty is particularly strong and active in biomechanical engineering, fluid dynamics, turbulence, combustion, thermal systems engineering, multiphase flows, energy and power systems, transport processes in microgravity, mechanical systems and design, control and robotics, dynamics and control of space structures, mechanics of materials and materials processing, materials microgravity sciences and computational mechanics. Biomechanical engineering: Analysis and design of biomechanical systems for orthopedic surgery; development of computer-aided design and analysis techniques for bone-implant systems; skeletal adaptation and bone structural behavior; mechanics and dynamics of human and animal motion and coordination. Combustion: Combustion processes for practical energy-conversion devices; computational techniques for turbulent combustion; incineration of municipal and hazardous waste; combustion in a microgravity environment; computer simulations of rapid granular flows; models of pneumatic transport; laser imaging studies of turbulent combustion; development and application of laser tomography for combustion measurements. Energy and power systems: Combustion and transport processes in gas turbine combustors. Fluid mechanics: Theoretical and experimental studies of turbulence with applications to industrial, meteorological and oceanographic flows; construction of consistent turbulence models; experimental studies of transition to turbulence and three dimensionalities in wakes, shear flows, and boundary layers; linear and nonlinear wave propagation and stability studies of vortex flows; experimental investigations of vortex structure; vortex-induced vibration; fundamental vortex interactions; wing vortex wake dynamics; splash dynamics of droplets on surfaces. Heat transfer: Experiments in critical heat flux and boiling instability; heat transfer in electronic components; radiosity for realistic images in computer graphics; transport phenomena in materials processing; inverse heat transfer problems; computational design and control of thermal systems and processes.

Program overview

Main Subject

Engineering - Mechanical

Study Level

PHD

The program emphasizes basic mechanical sciences to prepare students for the diversity found at the frontiers of research and industrial development. The faculty is particularly strong and active in biomechanical engineering, fluid dynamics, turbulence, combustion, thermal systems engineering, multiphase flows, energy and power systems, transport processes in microgravity, mechanical systems and design, control and robotics, dynamics and control of space structures, mechanics of materials and materials processing, materials microgravity sciences and computational mechanics. Biomechanical engineering: Analysis and design of biomechanical systems for orthopedic surgery; development of computer-aided design and analysis techniques for bone-implant systems; skeletal adaptation and bone structural behavior; mechanics and dynamics of human and animal motion and coordination. Combustion: Combustion processes for practical energy-conversion devices; computational techniques for turbulent combustion; incineration of municipal and hazardous waste; combustion in a microgravity environment; computer simulations of rapid granular flows; models of pneumatic transport; laser imaging studies of turbulent combustion; development and application of laser tomography for combustion measurements. Energy and power systems: Combustion and transport processes in gas turbine combustors. Fluid mechanics: Theoretical and experimental studies of turbulence with applications to industrial, meteorological and oceanographic flows; construction of consistent turbulence models; experimental studies of transition to turbulence and three dimensionalities in wakes, shear flows, and boundary layers; linear and nonlinear wave propagation and stability studies of vortex flows; experimental investigations of vortex structure; vortex-induced vibration; fundamental vortex interactions; wing vortex wake dynamics; splash dynamics of droplets on surfaces. Heat transfer: Experiments in critical heat flux and boiling instability; heat transfer in electronic components; radiosity for realistic images in computer graphics; transport phenomena in materials processing; inverse heat transfer problems; computational design and control of thermal systems and processes.

Admission Requirements

7+
Students must have a Honor's Level BA; Honor's Level BSc.

2 Years
Jan-2000

Tuition fees

Domestic Students

0 USD
-

International Students

0 USD
-

Scholarships

Selecting the right scholarship can be a daunting process. With countless options available, students often find themselves overwhelmed and confused. The decision can be especially stressful for those facing financial constraints or pursuing specific academic or career goals.

To help students navigate this challenging process, we recommend the following articles:

More programs from the university

PHD programs 143